INDIAN SCHOOL MUSCAT

HALF YEARLY EXAMINATION

SET C

SEPTEMBER 2019

CLASS IX

Marking Scheme -MATHEMATICS

Q.NO.	Answers Set C	Marks (with split up)
1	SECTION A ($20 \times 1=20$) (d) 57°	1 m each For qns. 1-20
2	(c) $\sqrt{2} x^{2}-3 x+6$	
3	(c) 120°	
4	(d) -1	
5	(b) 1	
6	(a) x -axis	
7	(b) B and D	
8	0.32010010001...	
9	(b) $\triangle \mathrm{CBA} \cong \triangle \mathrm{PRQ}$	
10	(d) quadrants I and IV	
11	$(4,5)$	
12	9991	
13	1/3	
14	55°	
15	60°	
16	$a=-5$	
17	66°	
18	0.3162	
19	QR	
20	$\mathrm{P}=14$	
21	$\text { SECTION -B }(6 \times 2=12)$ Same as set A q.no. 25	
22	$9 a^{2}+4 b^{2}+25 c^{2}-12 a b-20 b c+30 a c$ (OR) $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x)$ substituting the given values and we get $x^{2}+y^{2}+z^{2}=35$	
23	$(0,0)(-5,0)$	1 each
24	$-2 x+5 y+1=0,3 x-8=0$	1 each

25	$\begin{array}{\|l\|} \hline \text { Let } x=2.3777 \ldots \\ 10 x=23.777 \ldots \\ 100 x=237.777 \ldots \text { solving, we get } x=107 / 45 \end{array}$	$\begin{array}{\|l} \hline 1 \text { each } \\ \text { step } \end{array}$
26	Given, to prove and proof	
27	$\text { SECTION }-\mathrm{C}(8 \times 3=24)$ Construction - no. line	
28	$\mathrm{a}, \mathrm{c}, \mathrm{e}$ are irrationals, b, d, and f are rationals	
29	$\text { By remainder thm. } f(3)=g(3)$ $27 a+36+9-4=27-12+a$ By Solving, we get a = -1 (OR) Same as set B Q.no. 32	
30	$y+2 y+69=180^{\circ}$ (linear pair) solving we get $y=37^{\circ}$ $37^{\circ}+x+x+13^{\circ}=180^{\circ}$ (angle sum property of a triangle) Implies $x=65^{\circ}$ Therefore, the angles are $37^{\circ}, 65^{\circ}$ and 78°	
31	$\begin{aligned} & \text { In } \triangle A B C, A B=A C \text { implies } \angle B=\angle C \\ & \text { In } \triangle A B E \text { and } \triangle A C D \\ & A B=A C \\ & \angle B=\angle C \\ & B E=C D \\ & \text { Therefore }, \triangle A B E \cong \triangle A C D(B y \text { SAS } \cong \text { RULE }) \\ & A E=A D(C P C T) \end{aligned}$	
32	Given, to prove, construction and proof.	
33	Let the numbers be x and y $Y=3 x$ $(1,3),(2,6),(3,9)$ or any other solutions....	
34	(i) $(4 z / 3-1)^{3} \quad$ (ii) $(6 a-v 2 b)\left(36 a^{2}-6-\sqrt{2 a b}+2^{2}\right)$	
35	SECTION-D $(6 \times 4=24)$ Rationalizing the denominator and on simplification we get $\quad a=0$ and $b=-1$	
36	$\mathrm{x}=1$ is a zero of the polynomial, quotient is $\mathrm{x}^{2}+5 \mathrm{x}+6$ using splitting the middle term we get, $(x+2)(x+3)(x-1)$	
37	Any three solutions Pt. $(3,-2)$ does not lie on the graph.	
38	Given, figure, to prove and proof. (OR) $\begin{aligned} & \angle \mathrm{QPS}+\mathrm{x}=\angle \mathrm{RPT} \\ & \angle \mathrm{QPS}=40^{\circ} \\ & \angle \mathrm{QPS}+\mathrm{x}+\mathrm{x}+30^{\circ}=90^{\circ} \end{aligned}$ $\text { On solving we get } \mathrm{x}=10^{\circ}$	
39	Given, figure, to prove and proof.	
40	After plotting the points on the graph, we get trapezium and its area $=15$ sq. units.	

